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The evolution of a tripolar vortex under the influence of a parabolic topography - 
like the free surface of a rotating fluid - is studied experimentally and with a point- 
vortex model. Laboratory experiments reveal that tripoles generated off-axis become 
asymmetric and the whole structure travels towards the centre of the tank along an 
anticyclonic spiral. During this translation the structure rotates quasi-periodically 
with the core pairing alternately with one of the satellites. An asymmetric point- 
vortex tripole (with the central vortex located at a distance E from the middle point 
of the configuration) displays a periodic motion which is qualitatively similar to the 
motion of the laboratory tripoles. The exchange of fluid between the three vortices 
as a function of the perturbation parameter E is studied using the lobe-dynamics 
technique. A point-vortex tripole modulated on the basis of conservation of potential 
vorticity reproduces quantitatively the trajectories of the individual vortices measured 
in the laboratory. As in the experiments, the model shows that fluid is strongly stirred 
in the region surrounding the vortex cores and that the tripole carries a finite amount 
of fluid. 

1. Introduction 
Two-dimensional flows are characterized by the emergence of coherent long-lived 

vortices. Among these, the most abundant vortex types are the monopole, which 
consists of a region of fluid rotating around a single centre, and the dipole, which 
is a self-propagating arrangement of two closely attached monopoles of opposite 
sign. The tripolar vortex follows the monopole and the dipole in increasing order of 
complexity. This vortex structure can be defined as a compact, linear arrangement 
of three patches of continuously distributed vorticity, with the central vortex being 
flanked at its longer sides by two weaker vortices of oppositely signed vorticity. This 
symmetric configuration performs, as a whole, a steady rotation in the direction 
defined by the circulation of the central vortex. 

The emergence of a symmetric tripole from an unstable monopolar vortex was 
originally mentioned by Leith (1984), who subjected a minimum-enstrophy vortex 
to a random asymmetric perturbation. This transition has been observed later both 
in laboratory experiments (van Heijst & Kloosterziel 1989; van Heijst, Kloosterziel 
& Williams 1991; Flbr et al. 1993) and in numerical simulations (Carton, Flier1 & 

t Present affiliation: CICESE, Departamento de Oceanografia Fisica, 22800 Ensenada, B.C., 
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Polvani 1989; Orlandi & van Heijst 1992). Tripoles have also been observed to arise 
spontaneously in two-dimensional turbulent flows (Legras, Santangelo & Benzi 1988) 
and by a collision of two misaligned dipolar vortices (Orlandi & van Heijst 1992). 
Recently, a tripolar-like vortex has been observed in the ocean in the Gulf of Biscay 
(Pingree & LeCann 1992). In this case the tripolar structure - visible in sea-surface 
temperature - consisted of an elongated anticyclonic central vortex and two smaller 
cyclonic satellites and it had a horizontal dimension of 50-60 km. 

Van Heijst et al. (1991) studied the generation process of the tripolar vortex in a 
rotating homogeneous fluid from the instability of a cyclonic vortex, and the further 
evolution of the symmetric tripole. They compared flow measurements (stream 
function and vorticity distribution) with a point-vortex tripole and found that the 
main features shown by the laboratory tripole, namely the overall rotation of the 
structure and the topology of the streamlines in the co-rotating frame, are well 
described by the model. Flor et al. (1993) observed the emergence of a tripolar 
vortex from the instability of a monopolar vortex generated in a non-rotating linearly 
stratified fluid. This tripole, however, existed only for a short period before the 
destruction of the satellites and the subsequent transformation of the structure into a 
new monopolar vortex. 

Carton et al. (1989) studied numerically the instability of isolated monopolar vor- 
tices (i.e. monopoles with both positive and negative vorticity but zero net circulation) 
subjected to a mode-2 perturbation and found that the evolution depends on the 
steepness of the vorticity profile. For vorticity gradients in an intermediate range the 
monopolar instability leads to the formation of a tripolar vortex. A similar study was 
done by Orlandi & van Heijst (1992), who prescribed a random perturbation and 
observed that the mode-2 component dominated the evolution. This scenario is in 
agreement with the experimental situation, where the vorticity profile is smooth and 
- because of the generation mechanism - it is to be expected that the perturbations 
do not contain any preferred mode, but the most unstable one finally dominates (van 
Heijst et al. 1991). 

The tripole has been observed to be a steady and stable structure both experi- 
mentally and numerically: it can exist for many rotation periods without noticeable 
change of shape or size. However, it has been observed recently that a tripole 
generated off-axis in a rotating fluid rapidly loses its symmetry and the individual 
vortices show a complicated quasi-periodic motion (van Heijst & Velasco Fuentes 
1994). This behaviour produces a continuous stretching and folding of (dyed) fluid 
patches initially located within the tripole, a feature that suggests the existence of 
chaotic motion of fluid particles. A similar unsteady motion of the vortex centres has 
been observed in numerical simulations by Carton & Legras (1994), although in their 
case the unsteady motion and the asymmetry appear gradually after several rotations 
of the structure. 

The observation that quasi-periodic motion rapidly arises when the tripole is 
generated off-axis, as well as the numerical experiments showing the steadiness over 
a long period of the tripole in the two-dimensional case, suggest that the cause of the 
unsteady behaviour is a three-dimensional effect. The parabolic free surface of the 
rotating fluid produces a continuous stretching and squeezing of the vortex columns, 
which must change strength in order to preserve potential vorticity. This ‘modulation’ 
of the vortex strengths due to the non-uniform fluid depth is put forward here as the 
mechanism that causes the asymmetry and propagation of the tripole. 

The dynamic effect of the non-uniform depth produced by the parabolic free 
surface is equivalent to that of the so-called y-plane, which models the distribution 
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of ambient vorticity close to the pole of a rotating planet (see e.g. Nof 1990). In this 
connection, it is worth mentioning the complicated dynamics of isolated monopoles 
on the P-plane (which models the mid-latitude distribution of vorticity). As described 
by Carnevale, Kloosterziel & van Heijst (1991) and Sutyrin et al. (1994), in this case 
the evolution of the vortex is influenced by two intrinsic tendencies: (a) the mode-2 
instability with the subsequent transformation into a tripolar vortex, and (b )  the 
vortex drift - northwestwards for a cyclonic vortex in the northern hemisphere - 
usually accompanied by Rossby wave radiation. These authors did not presented 
details about the complicated motion of the satellites around the core or about mass 
transport between flow regions. 

This paper is organized as follows. In $2 we discuss the typical evolution of a 
tripole in a rotating-tank experiment. Section 3 is devoted to the motion of the 
vortex centres we use first a non-modulated point-vortex tripole, which is shown 
to display some features observed in the experiments, and later we analyse the 
modulated case and compare results with laboratory observations. Section 4 deals 
with the advection of fluid particles in the point-vortex models: here we present a 
comparison of the evolution of dye patterns in the laboratory and passive contours 
in the modulated point-vortex model. In $5 we summarize the results and give some 
conclusions. 

2. Laboratory observations of an unsteady tripole 
For the motion of a shallow layer of inviscid homogeneous fluid rotating at a 

constant angular speed Q one may derive the conservation relation (e.g. Pedlosky 
1979) 

where D/Dt = d/dt + u - V is the material derivative in two dimensions - with u the 
horizontal velocity, w is the vertical component of the relative vorticity o = V x u, 
f = 2Q is the Coriolis parameter, and h ( x , y )  is the fluid depth. Owing to the 
system's rotation the free surface of the fluid acquires a parabolic shape. Since 
the bottom is assumed to be flat, the depth as a function of position is given by 
h(y) = ho[l t . f i r 2 / ( 8 g h o ) ] ,  with g the gravity acceleration and r the distance to the 
rotation axis, at which the fluid has a depth ho. By substituting this expression in 
(2.1) and expanding the result in a Taylor series one obtains 

" ( O - g ) O ,  Dt 

where a small Rossby number (w/f0<1) is assumed and second-order terms have 
been neglected. 

Let us now consider the case of a layer of fluid with constant depth ho located 
close to the pole of a rotating planet. The horizontal dimensions are assumed to be 
small compared to the planet's radius, so that the curvature of the domain enters (2.1) 
only through the variation of the Coriolis parameter, which in this case is given by 
f = 2Qsin4, where 4 is the geographical latitude. A Taylor expansion of the latter 
expression around the pole (4 = in) renders the linear term (b )  identically zero and 
the Coriolis parameter is given to leading order by f = fo - yr2, where f o  = 2Q and 
y = 52/R2, with R the planet's radius. This approximation is known as the y-plane 
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model (Nof 1990) and leads to the following expression for conservation of potential 
vorticity : 

D 2 -(u - yr  ) = 0, 
Dt 

where r is now the distance to the pole. Equations (2.2) and (2.3) are equivalent, 
showing that the dynamics of a free-surface rotating fluid is equivalent to that of a 
fluid on a y-plane, with the ‘topographic’ y given by y = f3/8gho. Note that north is 
equivalent to shallow, and lines of equal fluid depth (isobaths) correspond with lines 
of equal latitude (parallels). 

The experiments were carried out in a rectangular tank of horizontal dimensions 
100 x 150 cm2 and 30 cm depth mounted on a rotating table, with the tank‘s centre 
located at the rotation axis. The angular speed of the system was set to i2 = 0.56 s-l, 
so that the Coriolis parameter f = 1.12 s-l, and - in the experiment described below 
- the tank was filled up to a height of ho = 17 cm. Therefore the parabolic free 
surface produced a value of y = f3/8gho = 0.109 m-2s-1. The difference in water 
depth between the axis of rotation and the closest walls was 4 mm. 

A tripolar vortex was generated by stirring the fluid cyclonically in a bottomless 
cylinder of 19 cm internal diameter, placed in the rotating fluid at 30 cm from the 
rotation axis, and then quickly lifting this cylinder. The flow was visualized using 
fluorescein, which was added to the fluid after stirring it and before the generating 
cylinder was removed. An isolated monopole (i.e. a vortex with a single rotation 
centre and zero net circulation) was thus produced in the uniformly rotating ambient 
fluid. This vortex became unstable, resulting in the gradual formation of a tripolar 
vortex. When the formation process of the tripole was completed (figure la) the 
three vortices were aligned and the two satellites were located at equal distances 
from the central vortex. The structure rotated as a solid body and, owing to the 
off-centre location of the tripole, the satellites were alternately squeezed and stretched 
as they rotated around the central vortex. Note that in this particular experiment 
the satellites encountered a difference of about 1.5 mm in fluid depth between their 
locations of minimum (20 cm) and maximum (40 cm) separation form the tank centre. 
This seemingly small value turned out to have a major effect on the evolution of 
the structure. After about one rotation of the satellites, a small asymmetry began 
to develop and the vortices lost their alignment (figure lb)  and the central vortex 
then moved away with one of the satellites (figure lc). However, this couple was 
asymmetric and moved along a curved trajectory (figure Id). As a result of the 
collision of the couple with the satellite left behind (figure le) the central vortex 
changed partner and the new couple moved away. Then the process repeated itself, 
with the subsequent looping excursion of the couple being larger (compare figures lg  
and le), and with the vortices being arranged in an almost right-angled triangle 
during the collision of the couple with the satellite (figure li). 

Another remarkable feature observed in this experiment is the complicated distri- 
bution of dye. Each time the central vortex pairs with one of the satellites, the new 
couple leaves behind a tail of dye that links it with the remaining satellite (figure lc). 
As the couple returns, the tripolar structure traps the ambient (undyed) fluid located 
between the couple, the satellite and the tail of dyed fluid (figure Id). Subsequently, 
as the central vortex changes partner, this ambient fluid is wrapped around the new 
couple (figure le). This process, which occurs every time the central vortex changes 
partner, leads to the formation of alternating filaments of dyed and undyed fluid, as 
is revealed by a close examination of the tail linking the couple with the monopole 
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FIGURE 1. Plan-view photographs showing the evolution of a tripolar vortex in a rotating free-surface 
fluid (experimental parameters ho = 17 cm, SZ = 0.56 s-', R = 30 cm). Pictures were taken at times 
t = 0.9 (a), 5.4T (b ) ,  7.2T (c), 9T ( d ) ,  10.8T ( e ) ,  12.6T ( f ) ,  14.9T (g), 18.46T (h) ,  and 22.1T (i), 
with the rotation period of the table T = 11.1 s. 

in figure l(h,i). It is clear that a patch of fluid that at some stage enters the tail, is 
later subjected to repeated stretching and folding. This indicates that the advection 
of fluid parcels is chaotic in some flow regions. 

In the following sections we study in detail the motion of the vortices as well as 
the advection of fluid parcels. This will be done with two point-vortex models: in 
the first one the point vortices have constant circulations but they form initially an 
asymmetric tripole, whereas in the second model the point vortices form initially 
a symmetric tripole but their circulations are modulated (i.e. they are given by a 
prescribed function of space, which accounts for the squeezing and stretching of fluid 
columns). 
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FIGURE 2. (a) Initial configuration of the point vortices in the asymmetric tripole with E respresenting 
the asymmetry; (b )  general configuration of the system: dl is the distance between satellite 1 (Sl) 
and the central vortex (C), d2 is the distance between satellite 2 (Sz) and C,  and 0 is the angle 
between the lines joining SI and S2 with C (measured in an anticlockwise sense from S1 to S2). 

We have chosen a point-vortex representation because it models properly some 
features of steady tripoles with a continuously distributed vorticity (van Heijst 
et al. 1991), although this simple model cannot reproduce the generation of rela- 
tive vorticity (i.e. Rossby wave radiation) that occurs in a system with non-uniform 
ambient vorticity. Nevertheless, Velasco Fuentes & van Heijst 1994 and Velasco 
Fuentes, van Heijst & Cremers 1995 found that the numerical results obtained with a 
modulated point-vortex model compare well with experimental observations of dipo- 
lar vortices on a (topographic) P-plane, at least for some period. Notice, incidentally, 
that the gradients in the ambient vorticity used by these authors are ten times larger 
than the ones considered in this paper. 

3. Vortex motion 
3.1. A non-modulated point-vortex tripole 

Three point vortices display a large variety of regimes of motion as the vortices’ 
strengths and relative positions are changed. It therefore cannot be a surprise that the 
three-vortex problem has attracted the attention of scientists for more than a century. 
In fact, it was already known to Poincark (1893) that the motion of three vortices 
with arbitrary circulations is integrable. However, the actual reduction of the motion 
to quadratures has been the subject of numerous works (Grobli 1877; Synge 1949; 
Novikov 1976; Aref 1979). 

Our interest in the motion of three point vortices stems from observations of 
tripolar vortices generated in a rotating fluid. These vortices usually have zero total 
circulation - like the monopolar vortices from which they originate - and their two 
satellites possess equal circulations (van Heijst et al. 1991). As a consequence, the 
parameter set is considerably reduced: the point vortices are assumed to have the 
strengths - - I ~ ~ , ~ I c ~ , - - I ~ ~  (with tc0 > 0), and to be located on the y-axis at time t = 0 
(figure 2a). The vortices with circulations - K O  are called satellites, the one located at 
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y = d being denoted by S1 and the one at y = -d by S2. The central vortex (with 
circulation 27c0) is located at y = fd and will be denoted by C .  This choice does 
not represent a loss of generality, since more general initial configurations reach this 
particular one in the course of the motion of the vortices. Those configurations can 
thus be transformed into our ‘reference tripole’ after an appropriate rotation of the 
coordinate system and by a rescaling of time and length. 

The motion of such a set of point vortices has been studied by Rott (1989), who 
showed that it can be effectively reduced to an advection problem in a two-dimensional 
steady field (the phase space), whereas Aref (1989) showed that this reduction is 
possible for all sets of three point vortices with vanishing total circulation. 

The motion of a system of point vortices on an infinite domain is given by the 
Hamiltonian equations (see e.g. Batchelor 1967) 

with 
N 1 

4rt 
H = -- C rcircj lnrij, 

i, j= 1 
i#i 

where r i  = (xi - x j )2  + (yi - ~ j ) ~ .  The first integral of motion is the Hamiltonian 
itself, which does not depend explicitly on time. Three more integrals can easily be 
obtained from invariance with respect to translation and rotation: 

N 

i= 1 

For the configuration of 
have the following values: 

i= 1 i=l 

three vortices defined above these conserved quantities 

4 2 
2rt (1 - €2)2’ 

H R  = In (3.5) 

where the subindex R indicates ‘reference configuration’ and lengths have been scaled 
by d. 

In the non-modulated case the vortex circulations are constant; therefore, as the 
absolute positions of the vortices are not important, the distances between the vortices 
are sufficient to describe the state of the system (Aref 1979). It is more convenient, 
though, to choose the distance dl between C and S1, the distance d2 between C and 
S2, and the angle 8 between the line joining the central vortex with the satellites 
(figure 2b). This choice allows a distinction between two configurations where the 
point vortices are located at the vertices of similar triangles but in a different order. 

In the discussion below, frequencies are scaled by the angular frequency Qo = 
3k-o/4rtd2 of the symmetric tripole (6 = 0), time is scaled by the rotation period 
T = 2n/Qo, velocities by the velocity U = ico/4nd of a symmetric dipole, and lengths 
have been scaled by d. 



18 0. U. Velasco Fuentes, G. J.  F. van Heijst and h? P. M. van Lipzig 

0 0.5 1 .o 1.5 
t 

FIGURE 3. Behaviour of the asymmetric point-vortex tripole: (a) trajectories of the point vortices 
C (thick line), S1 (thin line) and S2 (dotted line). (b )  Evolution of the distances dl and d2 and the 
angle 8. The calculations were performed for E = 0.4. 

An example of the vortex trajectories of an initially asymmetric point-vortex tripole 
(e = 0.4) is shown in figure 3(a), where the vortices’ initial and final positions are 
indicated by filled and open dots, respectively. In addition to the periodic rotations 
of the satellites, the structure has a net translation in the positive x-direction, which 
is the case for all E > 0 (for e < 0 the translation occurs in the negative x-direction). 

Figure 3(b) shows the time evolution of the distances dl (thick line) and d2 (thin 
line), and the angle 8 (dotted line). As is indicated by the two aligned arrows in 
figure 3(b), when the three vortices are aligned [8(t )  = 7c] the distances dl ( t )  and &(t) 
reach extreme values (one reaches a maximum and the other a minimum). This is so 
because an extreme value of the distance from a satellite to the central vortex must 
occur when the two vortices have zero velocity relative to each other, which happens 
only when all vortices are aligned or in the shape-preserving equilateral-triangle 
configuration - for this particular system of point vortices. Similarly, as is indicated 
by the single arrow in figure 3(b), when the vortices are located at the vertices of 
an isosceles triangle ( d l  = d2) the angle 8 reaches an extreme value (maximum or 
minimum). This must be so because the time derivative of 8 is zero when both 
satellites rotate at the same rate around the central vortex, i.e. when they are located 
at the same distance. These two properties can be formally proved using the system’s 
Hamiltonian function found by Rott (1989). 

Rott (1989) also showed, using the same Hamiltonian function, that three regimes 
of motion may arise as a function of the initial asymmetry e (NB Rott uses the more 
general definition b = P/27c0, which is equal to e for our particular choice of initial 
configuration): (i) for 6 + 0 the three vortices are separated by distances of the same 
order during the whole evolution; (ii) for E -+ 1 the central vortex is close to S1 while 
S2 permanently remains at a much larger distance; and (iii) for €91 the two satellites 
are close together while the central vortex remains far from them. We consider here 
how the frequency, the mean speed and the perturbation amplitude of dl, d2 and 8 
vary in the range 0 < 6 < 1, i.e. only in the first two regimes of motion. The critical 
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FIGURE 4. (a) Frequency SZ, and ( b )  mean propagation speed U, of the tripole configuration shown 
in figure 2(a) as a function of the initial perturbation E of the position of C. These quantities 
are scaled by the frequency 00 = 3 ~ 0 / 4 n d ~  of the symmetric tripole ( E  = 0), and the velocity 
U = rco/4nd of the symmetric dipole ( E  = 1). 

FIGURE 5. Intermediate stages for different regimes of motion. (a )  Tripole regime: at time t = T/4 
the vortices form an isosceles-triangle configuration; at this point C pairs with S2, leaving S1 behind. 
(b )  For the critical value e, = 0.544 the vortices move asymptotically towards an equilateral-triangle 
configuration which translates steadily. (c) Dipole-monopole regime: for E > 0.544 the three vortices 
reach a new linear configuration at t = T/2, but now C occupies an extreme position. T is the 
period of the motion. 

value e, at which the change from regime (i) to regime (ii) takes place is also briefly 
discussed. 

Tripole regime 
The tripole regime occurs in the range 0 < e < e,. For all E # 0 vortices C and S1 

move initially in the same direction. These can be considered as forming a ‘couple’, 
with S1 rotating around C relatively fast in comparison with the rotation of vortex 
S2. Owing to its asymmetry, the couple C-Sl moves towards S2, and an exchange of 
partner takes place. The new couple C-S, moves initially away from S1, but it is also 
asymmetric and moves back to re-encounter S1. A periodic motion, with C pairing in 
turn with S1 and S2, arises. The angular frequency R, of this motion increases slightly 
from 1, and reaches its maximum value at E w 0.49, see figure 4(a). A further increase 
of E leads to a large decrease of the frequency. The tripole’s mean translational speed 
increases continuously from zero at E = 0. For small E the increase is slow and it is 
faster as E approaches its critical value (figure 4b). 

In this regime the vortices reach an isosceles-triangle configuration after one quarter 
of a period (figure 5a). Vortices S1 and S2 are located at the ends of the triangle’s 
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base, which has a length of 21. Vortex C is located at ( x , y ) ,  at a distance 6 from the 
base of the triangle. The integrals of motion uniquely determine the size and shape of 
the configuration and the value of the coordinate y ,  whereas x remains undetermined. 
The integrals of motion are given at this stage by 

PI = 2x06, 
II = -2iC0(A2 - 26y  + S 2 ) ,  

J4 21 
27c ( S 2  + / 2 2 ) 2 ’  

HI  = --ln 

where the subindex I indicates ‘isosceles-triangle configuration’. Conservation of P ,  I 
and H during the whole evolution implies that 

6 = E, (3 .6)  

/I2 + 2E - 1 
Y =  2E , (3.7) 

(22 + 2 ) 2  - (1 - 2)9. = 0, (3.8) 
The height of the triangle is thus equal to E and the length 2/2 of its base can be 
obtained from the third equation. Once 1 is known, the position y of the central 
vortex follows from the second equation. 

Dipole-monopole regime 
Beyond the critical point (E, < E < l), one finds the dipole-monopole regime. 

C and S1 can be considered as being a couple since the distance between them is 
much smaller than that between C and S2. The couple thus rotates owing to its own 
asymmetry and propagates owing to the presence of the third vortex (S2) ,  which in 
turn shows an average translation with a wobbling perturbation superimposed. The 
frequency in this range is again a growing function of E (thick line in figure 4a). An 
empirical approximation of it is given by the rotation frequency of an asymmetric 
dipole formed by vortices C and S1 (assuming that S2 has no influence on this couple). 
The angular frequency of this asymmetric dipole is given (in dimensional form) by 
QD = ~ ~ / 2 7 c d ~ (  1 - F ) ~ ,  which approximates well the frequency of the three-vortex 
system for E -+ 1 (the broken line in figure 4a). 

The mean translation speed U, of the three vortices decreases with growing c 
(thick line in figure 4b). An empirical approximation for this speed is obtained by 
defining a virtual dipole, which is formed by vortex S, and a vortex with the same 
total circulation as the asymmetric couple C-S1 located at the centre of rotation of 
this couple. The virtual dipole so defined moves with a (dimensional) velocity given 
by UD = ~ 0 / 4 x c d  (represented by the broken line in figure 4b). This velocity is a good 
approximation of the mean velocity of the three vortices as E -+ 1. 

Since the central vortex C does not change partner in this regime, the vortices 
never reach an isosceles-triangle configuration. Instead, they take positions on a 
straight line after one half-period (figure 5c), but now the central vortex C occupies 
an extreme position in the linear configuration. Satellite S1 is separated by a distance 
x from C, and S2 by a distance 5.  As before, the integrals of motion may be used to 
determine the values of x and 5 as functions of the initial perturbation E. 
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Equilateral triangle 
At the critical value e,, the initial linear configuration transforms asymptotically 

into an equilateral triangle with sides 2(3)-'i2eL (see figure 5b). The critical value can 
be found by substituting e = e, and A = (3)-'/2e, in (3.8) and solving numerically for 
ec, which yields ec FZ 0.543997. 

The triangular configuration translates, without change of size or shape, at a con- 
stant speed U, = 31c0/4md (indicated by a diamond in figure 4b). This configuration 
is unstable, i.e. it corresponds to a fixed point of hyperbolic type in the phase space 
(Rott 1989). Since it takes an infinite time to reach a hyperbolic fixed point (or to 
escape from it) the frequency of the system is zero. The frequency is larger than zero 
(and the velocity smaller than U,) in figure 4 because calculations have been done 
close to, but not at, the critical point. 

The asymmetric configuration discussed in this section reproduces some of the 
features observed in the experiments. In particular, it renders the essentially time- 
dependent behaviour of the tripole, which goes in succession through linear and 
isosceles-triangle configurations. However, it fails to reproduce the growing amplitude 
of the asymmetry, which is in fact approximately zero as the tripole is formed. In 
other words, this model describes the evolution of an asymmetric tripole, but it does 
not explain how the asymmetry arises. The following section is intended to provide 
an answer to the latter issue. 

3.2. A modulated point-vortex tripole 
Laboratory experiments like the one discussed in $2 have shown that the evolution 
of the tripole is strongly influenced by its initial separation from the axis of rotation. 
This suggests that the unsteadiness of the tripole is caused by the parabolic free 
surface of the rotating fluid in which the vortex is generated. As the satellites 
rotate around the central vortex the non-uniformity of the fluid depth produces a 
continuous stretching and squeezing of fluid columns, which, having to preserve 
potential vorticity, alternately gain and lose relative vorticity. These effects can be 
incorporated in the point-vortex model by assuming that each point vortex represents 
a small patch of vorticity (see e.g. Kono & Yamagata 1977; Zabusky & McWilliams 
1982). The circulation IC, therefore equals the (uniform) vorticity a, multiplied by 
the area of the patch a,. Conservation of potential vorticity implies that the relative 
vorticity o of a fluid patch moving in the latitudinal direction changes as expressed by 
(2.2) or (2.3). These equations, in addition to area conservation, yield the modulation 
equation for the vortex circulation (see e.g. Velasco Fuentes 1994) 

(3.9) 

where y. = nL2y (with L the radius of the area associated with the 'point' vortex), 
and rlo is the distance from the tank centre to the point vortex' initial position, at 
which the vortex has strength K,O. 

We study the evolution of the point-vortex tripole on the y-plane as a function of 
two parameters: ( a )  ye, which represents the curvature of the free surface; and (b )  
the initial position of the tripole, expressed by the distance R of the central vortex 
from the rotation axis or pole. Initially the vortices are located on a straight line and 
the satellites are separated by the same distance d from C (figure 6a). In all cases 
discussed here the linear arrangement is tangent to the circle r = R at the position of 
C (figure 6a). 

Owing to their modulated strengths, the motion of the point vortices is essentially 
determined by their absolute positions. The three coordinates used in the previous 

2 2  
K ,  = K10 - y*(r,o - r, 1, 
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c 

FIGURE 6. (a) Initial conditions of a symmetric point-vortex tripole on a y-plane. (b)  General 
configuration of three point vortices on a y-plane. The parameters d l ,  d2 and 8 are defined as in 
figure 2(b), c is the distance from S2 to the pole and tl is the angle between the lines joining S, to 
the pole and to C. 
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FIGURE 7. Modulated point-vortex tripole on the y-plane: ( a )  typical trajectories of the individual 
vortices C (thick line), S1 (thin line) and S2 (dotted line); ( b )  evolution of the parameters d l ,  dZ and 
8. The calculations were performed for y. = 0.01 and R = 3. 

section are thus not enough to uniquely describe the state of this system. Although six 
coordinates are needed to determine the absolute positions of three points in a plane, 
the rotational symmetry of the parabolic free surface (or the y-plane) reduces to five 
the number of coordinates that uniquely determine the state of the system. These 
are chosen to be the distances dl and d2 and the angle 8, which define the relative 
positions of the vortices, in addition to the distance c from the centre to vortex Sz 
and the angle CI between this line and the line joining S2 and C (figure 6b). 

The point-vortex tripole typically evolves as follows (see figure 7a).  As the satellites 
rotate around C, S1 moves towards shallower regions and thus becomes stronger 
(more negative) while S2 moves towards deeper areas and becomes weaker (less 
negative). As a consequence, the velocities induced by the satellites on the central 
vortex do not cancel each other anymore and C begins to move in the direction of the 
stronger satellite (Sl). Although initially small, this asymmetry is enough to induce a 
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FIGURE 8. (a) Rotation periods during one excursion of the modulated point-vortex tripole on the 
y-plane and ( b )  a,,, (filled dots) and amin (open dots), as a function of the initial position ( R )  of 
the tripole (and for a constant y. = 0.01). The solid lines give the corresponding values for the 
unperturbed tripole. 

net centreward drift to the tripole. This shift increases the asymmetry, which in turn 
strengthens the tripole's drift, as has been shown in $3.1 for the non-modulated case. 
However, because the isobaths are circles and the drift is not straight centrewards, 
the tripole reaches a maximum centreward displacement and continues its drift but 
now away from the centre. The asymmetries decrease and the tripole approximately 
reaches the initial symmetric state as it returns to its initial radial position. 

The evolution of each of the parameters dl, d2 and 6' also illustrates this behaviour 
(figure 7b). Two characteristic periods can be defined in these time series: (i) the 
rotation period is the time it takes for the satellites to rotate around C and is computed 
as the time between two adjacent local extreme values of d l ;  and (ii) the excursion 
period is the time it takes for the tripole to move towards the centre and back to 
its initial radial position (e.g. figure 7a shows vortex trajectories during one complete 
excursion). 

The rotation periods displayed by the tripole for different initial positions are 
shown in figure 8(a). Each dot represents one rotation of the satellites and all dots 
lying on the same vertical line originate from the same simulation. For example, in 
the numerical experiment shown in figure 7(a) S1 and S2 rotate approximately eight 
times around C: there are thus eight points on the vertical line R = 3 in figure 8(a). 
It is obvious that for all initial conditions the first rotations of the satellites around 
C are completed in a period approximately equal to that of the unperturbed tripole 
(represented by the solid line). However, the rotation period becomes longer as the 
tripole moves towards the centre. This feature originates from the larger distance 
between the satellites and the central vortex, in addition to the lower strength of C 
and higher strengths of S1 and S2. Therefore, as the initial position R increases, the 
range of values of the rotation period also grows, with the lower limit remaining 
approximately constant and the higher one increasing. 

In addition, figure 8(b) shows the extreme values of the perturbation of the 
distance d l ( t )  as a function of the initial position R. The filled circles represent 
d,,, = max(d1) - 1 and the open circles dmin = min(dl) - 1, where max (dl) and 
min ( d l )  are the maximum and minimum values of dl(t) during one excursion of the 

A h 
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FIGURE 9. The same as in figure 8, but now as a function of y. and for 
constant distance to the centre R = 1.5. 

tripole, respectively. The graph shows that amax grows linearly as R increases, whereas 
amin smoothly decreases as R becomes non-zero and remains approximately constant 
with further growth of R (in the range of values considered here). 

Similar effects are observed if the initial position of the tripole is kept constant and 
the value of y. is varied. For y. = 0 the unperturbed symmetric tripole is recovered, 
and with increasing yI the range of values of the rotation period broadens (figure 9a). 
The broadening occurs towards longer periods, as is the case for increasing initial 
distance to the centre. The value of am,,, grows in a nonlinear manner with y e  (see 
figure 9b), whereas amin is approximately constant - but smaller than the unperturbed 
value - for the range of parameters studied here. 

Some remarks about the integrability of the motion of a modulated point-vortex 
tripole are in order. If the numerical experiments are allowed to continue for 
several excursions of the tripole then more rotation periods appear, although all of 
them lie within the same range displayed during the first excursion (e.g. figures 8a 
and 9a). Furthermore, it is observed that the set of vortices stays within the tripole 
regime defined in 33.1. This result suggests that the motion of the modulated 
tripole is integrable in the parameter region explored in this paper (0 < R < 4 and 
0 < y. < 0.04). However, for larger values of R the three point vortices have been 
observed to enter the dipole-monopole regime and then go back to the tripole regime, 
i.e. at least one linear-configuration event occurred with C not located between the 
satellites. An analogy with the advection of a passive scalar suggests that these regime 
changes might be an indication of chaotic behaviour of the system. Indeed, passive 
scalars can have chaotic trajectories when they enter and leave regions of qualitatively 
different motions in the course of the flow evolution (see e.g. 34.1 below). 

3.3. Comparison of experimental and numerical results 
The trajectory described by each vortex in the laboratory experiment discussed in 92 
is displayed in figure 10(a). The thick line represents the path of the central vortex, 
the thin line that of S1, and the dotted line that of S,. Two features are clearly seen 
in this figure: (i) the increasing amplitude of the cycloid-like motion of the central 
vortex; and (ii) the westward drift of the structure as a whole (the cross indicates 
the tank's centre, which is the pole of the topographic y-plane). Both effects can also 
be seen in the evolution of the parameters d l ,  dZ, and 6 (figure lla). In this figure 
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FIGURE 10. (a) Observed trajectories of the vortex centres of the tripolar vortex shown in figure 1 
and (b)  numerical simulation of (a) using three modulated point vortices. The central vortex C is 
represented by a thick line, S1 by a thin line and S2 by a dotted line. 
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FIGURE 11. Evolution of the parameters d l ( t ) ,  & ( t )  and e(t) for: (a) the laboratory experiment 
shown in figure 10(a); and (b )  the numerical simulation shown in figure 10(b). 

the two aligned arrows indicate that extreme values of dl and d2 occur at a linear 
configuration (0 = n), whereas the single arrow indicates that an isosceles-triangle 
configuration (dl  = d2) Is reached when the angle 0 takes a local extreme value, as in 
the point-vortex models described in previous sections. 

A numerical simulation was performed to compare with these experimental obser- 
vations. The value of y and the initial positions of the point vortices were chosen 
to correspond to those of the experimental situation, and the radius of the circular 
area assigned to the point vortices was taken as d / 2 ,  where d = 11 cm is the initial 
distance from the satellites to the central vortex. 

The circulations of the point vortices in the model ( - I c ~ , ~ I c o , - K ~ )  were then esti- 
mated by considering the rotation of a symmetric point-vortex tripole. This rotation 
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has an angular speed given by 52, = 3~,3/47cd~, where Qt is the tripole's angular speed 
in the experiment. The decay is taken into account by using a mean angular speed 

l 7  
52, = 1 522maxe-atdt, 

where G?,,,,, is the measured initial angular speed (0.33 s-'), z is the duration of the 
experiment (300 s), and the value of a (0.013 s-l) was computed using the results of 
van Heijst et al. (1991), who measured an exponential decay of the angular speed of 
the steady tripolar vortices. This decay is most likely due to the bottom Ekman layer. 

As observed in the experiment, the resulting vortex trajectories (figure lob) show 
growing cycloids and the structure drifts towards the centre along a curved path. 
Figure l l (b)  shows the evolution of the parameters d l ,  d2 and 6' in this simulation, 
which shows a good agreement with the observations (figure lla), as can be expected 
from the good agreement between the observed and the computed vortex trajectories. 
However, owing to the discrete representation of the continuous distribution of 
vorticity, the numerical series are smoother than the experimental ones. There is also 
a time shift between these time series: the numerical tripole evolves more slowly. This 
is probably due to the use of a large a for the Ekman decay of the angular speed, 
which was chosen as an average of the values measured by van Heijst et al. (1991). 

4. Advection by an unsteady tripole 
The complicated dye patterns observed in figure 1 are the result of the essentially 

time-dependent motion of the tripole. This behaviour is also displayed in the two 
models described in §$ 3.1 and 3.2, namely: (i) an asymmetric linear arrangement 
without modulation; (ii) an initially symmetric tripole with modulation. 

The non-modulated point-vortex tripole displays a periodic motion and this may 
lead to chaotic particle trajectories, as for any unsteady two-dimensional velocity field 
(see e.g. Aref 1984). Moreover, the motion is periodic, in which case we do not need 
to study the particle trajectories continuously in time: it is sufficient to know their 
positions every time the tripole returns to a reference configuration. This stroboscopic 
description (known as a Poincark map in the theory of dynamical systems) greatly 
simplifies the analysis of particle motion. The techniques used in this analysis are 
discussed in detail by e.g. Rom-Kedar, Leonard & Wiggins (1990) and Wiggins (1992), 
whereas applications of these techniques in problems similar to the one discussed here 
can be found in e.g. Velasco Fuentes (1994) and Velasco Fuentes et al. (1995). 

Although the non-modulated model does not reproduce the growing asymmetry 
observed in the laboratory situation, we believe that a good understanding of particle 
advection in this model helps in addressing the more complicated particle motion 
that arises in the modulated point-vortex tripole. For this reason, we will first discuss 
the transport characteristics of the non-modulated tripole model, before considering 
the effects of the modulation. 

4.1. Advection by an asymmetric point-vortex tripole 
The motion of fluid particles in the velocity field of an asymmetric tripole is most 
conveniently described by choosing a reference system in which the point vortices are 
either at rest or move periodically around an unperturbed position. The choice made 
here is a system that moves with the time-dependent velocity u(t)  of the central vortex 
C, and rotates with the average angular velocity 52, of the satellites around C. It will 
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FIGURE 12. (a) Trajectories of the point vortices 
trajectories in a frame moving with the central 
satellites (see text). 

prove convenient to write the velocity and the angular speed in the following way: 

u = (EU’, EV’), 
Qc = 0 0  + EQ’, 

where E is the initial shift of the central vortex C, and QO is the angular speed of 
the symmetric tripole. In these equations the primed variables are essentially time 
dependent, and the factor E stresses the fact that they appear only if the structure is 
asymmetric (E # 0). Note that Q, is given (in non-dimensional form) in figure 4(a), 
whereas the velocity U, given in figure 4(b) is the average value of U’ over one period 
of the tripole’s motion. Figure 12(a) shows the trajectories of the point vortices in a 
frame fixed in space for the case E = 0.4, while the same trajectories in the co-moving 
frame are shown in figure 12(b). In this moving system the satellites rotate around 
the unperturbed position (0, fd )  in a clockwise sense. 

The equations of motion of a fluid particle in the moving frame are given by 

+ (Qo + &’)y - €U’,  

- (a, + &’)x - €V’, 
dt 

where the definitions Xi = x - x i ,  Yi = y - yi and Ii = X ?  + Yi2 have been used. The 
positions of the vortices are given by (xi,yi), with i = 0 for the central vortex and 
i = 1,2 for satellites S1 and S2, respectively. 

These equations, together with the evolution equations (3.1), govern the motion of 
particles in the velocity field of an asymmetric tripole. This form of the equations is 
suitable for most of the calculations; however, for the computation of the Melnikov 
function in $4.1.1 the equations must be written in the form of a periodically perturbed 
integrable Hamiltonian system 

dxldt = f l b , Y )  + Egl[X,Y,Xl(t;E),Xz(t;E.)l, (4.5) 
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d Y l d t  = f 2 ( X , Y )  + egz[x,Y,xl(t;E),X2(t;E)l, (4.6) 

where xi = ( x i , y i )  is the position of satellite i ,  which can be written in the following 
form : 

xi = €ti, (4.7) 
Y l  = d + cq1, (4.8) 
y2 = -d - 6 ~ 2 .  (4.9) 

The perturbed form (4.5) and (4.6) is obtained by substituting (4.7)-(4.9) in (4.3) 
and (4.4) and expanding these equations in a Taylor series around E = 0. The zeroth- 
and first-order terms give the functions f i  and g i :  

f l  = 

f 2  = 

gl = 

g2 = 

(4.10) 

(4.11) 

where the new definitions Y+ = y f d and I+ = x2 + Y: - have been introduced, and 
I0 is defined as before. 

4.1.1. Lobe dynamics 
In this time-periodic case a significant simplification of the description of particle 

motion is achieved by using the Poincark map - the map of the particle location 
[x(to),y(to)] to the location one period later [x(to + T ) , y ( t o  + T ) ] .  Loosely speaking 
this corresponds to sampling the position of a particle every time the tripole returns 
to its initial configuration (i.e. 6 = 7c, a = d - E. and b = d + e). 

The streamline patterns of the stationary tripole (e  = 0) are illustrated in fig- 
ure 13(a). Four flow regions can be distinguished: the positive core, where particles 
rotate anticlockwise around the central vortex; two negative cores, where particles 
rotate clockwise around one of the satellite vortices; and the free flow region, where 
particles rotate clockwise around the set of vortices. The flow regions are separated 
by streamlines that intersect at two stagnation points. In the theory of dynamical 
systems these streamlines are called separatrices, whereas the point-vortex positions 
and the stagnation points are called fixed points of elliptical and hyperbolic type, 
respectively. 

The lower separatrix in figure 13(a) is formed by a collection of orbits (particle 
trajectories) that approach the hyperbolic point p -  as t + +a, called the stable 
manifold of p - ,  and a collection of orbits that emanate from the hyperbolic point p+ 
(i.e. approach p+ as t + -a), called the unstable manifold of p + .  Similarly, the upper 
separatrix is formed by the stable manifold of p+ and the unstable manifold of p - .  

For E # 0, but sufficiently small, the fixed points persist and the unstable manifold 
of p+ smoothly emanates from p +  as before, but in this case undergoes strong 
oscillations as it approaches p - .  Similarly, but for t + -00, the stable manifold 
smoothly emanates from p -  and undergoes strong oscillations as it approaches p + .  
The structure that results from the intersection of the manifolds of the two hyperbolic 
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FIGURE 13. (a) Stream function of the unperturbed point-vortex tripole in a frame rotating with the 
structure; ( b )  heteroclinic tangles of the perturbed tripole; ( c )  fluid exchanged between S1 and the 
ambient flow region; and ( d )  fluid exchanged between S1 and C. 

points is called a heteroclinic tangle (figure 13b), and indicates how transport of fluid 
between different flow regions occurs. Points A and B in figure 13(c), which are 
two adjacent intersections between the stable and unstable manifolds, are mapped to 
points A’ and B’. Correspondingly, the dotted area close to B in figure 13(c) maps to 
the dotted area close to B’. If the boundary between the fluid trapped by satellite S1 
and the ambient fluid is redefined as p+B along the stable manifold and Bp- along 
the unstable manifold, then the area bounded by segments of the stable and unstable 
manifolds between A and B represents the fluid that will be entrained into S1 in the 
next cycle. Since the flow is incompressible, an equal area is detrained in the same 
period. Similarly, the tangle formed by the stable manifold of p -  and the unstable 
manifold of p +  gives rise to transport of fluid between S1 and the central vortex C 
(figure 13d). 

The unstable manifold is constructed numerically in the following way. A line with 
length ad, where 2d is the distance between the satellites and 6 Q 1, is located on the 
fixed point and its evolution in the perturbed velocity field is computed forward in 
time. The line will be stretched in the direction of the unstable manifold. The stable 
manifold is constructed in a similar way, but the integration is now backwards in 
time. The exchange of mass can be evaluated directly from the discrete set of points 
defining the manifolds. Once a single lobe is identified the area follows from ,u = $ xdy 
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FIGURE 14. Entrainment and detrainment lobes of the perturbed point-vortex tripole for different 
asymmetries: (a) E = 0.1; (b)  0.2; and (c) 0.3. 

along the boundary of the lobe (e.g. the segments AB on the stable manifold and B A  
on the unstable manifold in figure 13c). This method is valid for every amplitude of 
perturbation e. 

Melnikov function 
The Melnikov function makes it possible to predict the behaviour of the stable and 

the unstable manifolds without explicitly solving the advection equations (4.3)-(4.4). 
The Melnikov function M(t0) is defined as (see e.g. Wiggins 1992) 

M(t0) = ~ ~ { f l [ X u ( t ) l g 2 [ X u ( t ) , X l ( t  + to;e),x2(t + to;e)l 

-f2[Xu(t)Igl[xu(t),xl(t + to;e),X2(t + to;e)l)dt, (4.1) 

where xU(t) = [x,(t),y,(t)] is the particle trajectory along the separatrix of the unper- 
turbed tripole. Since M(t0) is a first-order approximation of the distance between the 
stable and unstable manifolds, one can obtain an O ( E )  approximation for the area of 
a lobe by integrating this function (Rom-Kedar et al. 1990): 

,U = E. [ M(to)dto + O(e2), ( 4 4  

where to1 and to2 are two adjacent zeros of the Melnikov function M(to), i.e. they 
correspond to adjacent intersections of the unstable and stable manifolds. 

4.1.2. Numerical results 
Figure 14 shows some of the lobes that will be detrained or entrained during 

the next period for different values of the perturbation e. The thick lines represent 
entrainment lobes of satellite 1 and the central vortex, while the thin lines represent 
detrainment lobes of the central vortex and satellite 2. The letters in figure 14(a) 
indicate the region where the lobes are located at times t = nT and t = (n + 1)T, 
with n an integer number and T the tripole’s rotation period. For example, the lobe 
denoted by A-SI is located in the ambient fluid and will be entrained into satellite 
S1 after one period. The corresponding lobes for the cases e = 0.2 and e = 0.3 are 
shown in figure 14(h,c). It is obvious that the lobe area increases with increasing e. 

Note that every lobe is to be entrained into or detrained from a satellite, i.e. a 
satellite is involved in any mass exchange event, either with the central vortex or with 
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FIGURE 15. (a) Lobe area p as a function of E (expressed as a fraction of the area trapped by a 
satellite in the unperturbed case). The lobe areas of S1 and Sz are indicated by a solid line, those 
of C are indicated by a broken line. The lines represent Melnikov calculations and the symbols 
represent direct computations using the advection equations. (b)  The corresponding exchange rate 
p* = p/  T ,  according to the Melnikov calculations. 

the ambient fluid. For this reason it is natural to choose the area of a satellite in the 
unperturbed case ( m  2.054d2) as the unit area. Therefore, in what follows all areas are 
given as a fraction of this unit area. For example, the fluid area trapped by the central 
vortex, which is 58.5 % of that trapped by a satellite, is written simply as 0.585. In 
figure 15 the areas of the different entrainment lobes are given as a function of the 
initial asymmetry E .  The lines represent calculations using the Melnikov function, 
while the symbols give the result of direct numerical computations. Note that the 
ambient fluid exchanges equal amounts of mass with S1 (diamonds) and with S2 
(crosses). Similarly, the central vortex exchanges equal amounts with S1 (circles) and 
S2 (pluses). This apparently surprising result can be explained by two properties: (i) 
the shape of a lobe depends on the time at which the Poincari. section is constructed, 
yet its area is conserved owing to the incompressibility of the velocity field, and (ii) 
the position of S1 with respect to C at t = n T  is the same as the position of S, with 
respect to C at t = ( n  + i ) T .  Property (i) establishes that any lobe of, say S2, has a 
constant area, it thus follows from (ii) that the corresponding lobe of S1 has the same 
area. 

The lobe area for large E is of order 1 (figure Ma).  This does not mean that the 
whole core of S1 will be substituted by new fluid coming from the exterior region 
or the central vortex C. A large fraction of the lobe will in fact be found within 
C and S, after one period. The mechanism for that is the intersection of the lobes 
corresponding to different regions. For instance, in figure 14(a) it can be seen that 
there is an intersection between lobes S2-C and C-SI ; therefore, the fluid in that area 
will pass from satellite S, to S1 in a single period. 

4.1.3. Long-time evolution of fluid particles 

The evolution of particles after several iterations of the PoincarC map is investigated 
in this section. Knowledge of the structure of the tangle helps to efficiently compute 
the evolution of particles. For small values of E particles were placed in the lobe 
&-C, and for every period it is determined in which region each individual particle is 
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FIGURE 16. Percentage of particles (N) located in the ambient fluid (crosses), C (squares), SI 
(triangles), and S2 (circles) after n periods, for different initial asymmetries: (a) e = 0.05; ( b )  0.15; 
and (c )  0.25. A regular array of 3000 particles were initially located within the lobe that moves 
from S2 to C during the first period. 
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FIGURE 17. Initial location of tracers for ‘brute force’ calculations: (a) in the unmodulated - but 
asymmetric - case 1100 particles were located within each rectangle; ( b )  in the modulated - but 
initially symmetric - point-vortex tripole N particles were placed within each region determined by 
an arbitrarily chosen streamline and the separatrix ( N  = 2000 within each satellite and N = 1400 
in the central vortex); and (c) linear-configuration events of a point-vortex tripole on a y-plane (the 
numbers indicate the rotations of the satellites around the central vortex, i.e. the period). 

located. The fraction of particles that are located in the different regions approaches 
a constant value (different in every region) as the number of periods grows (figure 16). 
In the range 0 < E < 0.25 this effect is more rapidly achieved with growing E ,  and in 
all cases it is completed approximately by period 15. Similar results are observed if the 
particles are located initially in another lobe, with the same percentage of particles as 
in figure 16 (within an accuracy of 3 YO in our calculations) being located in different 
regions after 15-20 periods. 

For E close to the critical point (for both lower and larger values), the tangle has 
a complicated structure and the identification of the lobes becomes a laborious task. 
Therefore we turned to ‘brute force’ calculations for the study of particle motion in 
this range of the parameter E .  Now we are interested in the general structures that 
arise in the Poincari section rather than in an accurate description of the motion of 
species through the different flow regions. For this purpose particles were located in 
rectangular arrays close to the point vortices (figure 17a) and their positions sampled 
after every quarter period (i.e. as the vortices are in a linear arrangement or as 
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FIGURE 18. Positions of particles for a series of n iterations of the Poincare map for: (a) e = 0.49; 
( b )  0.54; (c) 0.56; and (d) 0.65. In ( a )  and (d) n = 6 ,..., 10; and in ( b )  and (c) n = 1 ,..., 5. ‘Red’ 
particles correspond to the central vortex, ‘green’ correspond to the satellite attached to the central 
vortex, and ‘yellow’ to the second satellite. For the number and initial position of particles see 
figure 17(a). 

they form an isosceles triangle). However, we show here only the Poincare sections 
constructed at a linear configuration of the vortices. 

In the range 0 < E < 0.5 the structures governing the transport between the different 
vortex regions are qualitatively similar, but the size of the fluid region permanently 
trapped by the individual vortices (cores) decreases with increasing E. A larger area, 
which surrounds the three vortices, is also permanently trapped by the tripole, and 
the fluid inside this region (but outside the cores) is strongly stirred. This extended 
region of trapped fluid has an almost circular shape for small values of E, but it 
becomes more oval and decreases in size with growing 6 .  It reaches its minimum size 
for 6 = 0.49 (figure 18a). Here, a new closed region of unstirred fluid appears between 
the central vortex C and satellite S2. A further increase of E leads to the formation of 
small lobe-like structures at the rear of the oval region. These lobes greatly increase 
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in size in the range 0.5 < c < 0.54, resulting in an opening and destruction of the 
oval region (figure 18b). 

The breakup of the oval region of trapped fluid around the tripole, as one ap- 
proaches the critical value e, w 0.544 from smaller or larger values of e, is most 
likely the result of the velocity reaching its maximum value at E,. For e close to e, 
the vortices translate almost as an equilateral triangle during a large fraction of each 
period. The fluid lost by any of the vortices during this phase is rapidly advected to 
the wake of the structure and cannot be recaptured when the central vortex makes a 
cycloid-like loop with one of the satellites. 

Figure 18(c) shows that just beyond the critical point c, w 0.544 the main features, 
such as the broad areas without particles between the couple C-S1 and S2 as well as 
the large lobe-like structures in the wake, are still observed in spite of the change of 
regime. However, close to the vortices an important change occurs: the regions of 
fluid permanently trapped by the satellites are almost completely absent (compare 
figures 18b and 18c). This results from the close approach of the like-signed vortices 
at t = ( n  + i ) T ,  as illustrated by the schematic figure 5(c) (compare it to figure 5a). 

For even larger values of e a new oval region of trapped fluid begins to form 
around the three vortices. The area of permanently trapped fluid around the distant 
satellite S2 increases, while the area trapped by the coupled vortices C-Sl decreases. 
This is illustrated in figure 18(d) for the case f = 0.65, where it can be seen that the 
core region of the ‘independent’ satellite SZ has greatly increased, and a new iegion of 
unstirred fluid appears between the couple C-S1 and satellite S2. Lobe-like structures 
are present only in the upper half-plane, indicating that fluid escapes from this region 
but not from the lower half-plane. 

It has been shown in $3.1 that for c + 1, the three vortices translate like a dipolar 
vortex, with the couple C-SI effectively being substituted by a virtual vortex with 
the same net circulation of this asymmetric couple located at its centre of rotation. 
The validity of this analogy for the advection of passive tracers has also been tested. 
Several fluid regions that would be carried by the virtual dipole without change of 
size or shape have been placed in the velocity field of the three point vortices. For 
large values of the initial asymmetry ( 6  > 0.75) the same area of fluid is carried by the 
tripole with almost no change of shape, a feature that is illustrated in figure 19 for 
the case c = 0.8. The fluid patches initially coincided with the (steady) streamlines of 
the virtual dipole, as indicated by the broken lines in figure 19. They were allowed to 
evolve with the three vortices during two periods, and the final positions of the curves 
are indicated by solid lines. It is clear that the separat,rix has not been substantially 
deformed, and the lines surrounding satellite 2 have not changed either. Only lines 
close to the couple C-S1 show a strong deformation. This result indicates that there is 
a fixed volume of fluid trapped by the tripole and that noticeable stirring takes place 
only in the vicinity of the couple C-SI, which could be considered as a periodically 
perturbed dipole. Particle motion in this region can therefore be analysed as has been 
done for a dipole in an oscillating strain field (Rom-Kedar et al. 1990) or dipoles on 
the y -  and fl-planes (Velasco Fuentes 1994; Velasco Fuentes et al. 1995). 

4.2. Aduection by a modulated point-vortex tripole 
In $3.2 we showed that there are some parallels between the motion of an asymmetric 
tripole (with the point vortices having constant circulations) and a modulated tripole 
(being initially symmetric but having circulations that are functions of position). In 
both cases the point-vortex tripole drifts perpendicularly to the line at which the 
vortices align themselves and its mean speed increases with the amplitude of the 
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FIGURE 19. Advection of tracers in the dipole-monopole regime (here E = 0.8). The contours of the 
patches at t = 0 (broken lines) coincide with streamlines of the virtual dipole (see text). The shape 
of the contours after two periods is shown by solid lines. 

perturbation (see 53.1). However, the asymmetric tripole moves in a fixed direction 
and its perturbation amplitude is constant, whereas the direction of motion and the 
perturbation amplitude of the modulated tripole change continuously. 

The analogies exhibited by the motion of the vortices in these models might suggest 
that the advection of passive tracers also shows significant similitude. This was verified 
by numerical experiments performed at a few points of the parameter plane (y., R), an 
example of which is discussed below (for the case y* = 0.01 and R = 3). The regions 
where the particles were located initially are indicated in figure 17(b). In the satellites 
the region is limited by the separatrices and the streamline located at a distance 0.2d 
along the y-axis, and in the central vortex the latter distance was 0.125d. Particles 
were uniformly distributed along streamlines of the unperturbed stationary tripole. 
Particle positions are then plotted every period, i.e. every second linear-configuration 
event. In the Poincark sections the positions are translated and rotated in such a way 
that the vortex C lies at the origin of the coordinate system and the satellites S1 and 
S2 are located at some distance on the y-axis. Figure 17(c) shows the real point-vortex 
positions after each period (the complete trajectories are shown in figure 7a). 

As can be seen in figure 7(b), the tripole undergoes a growing phase between 
period 1 and 4. After each period the distance between the satellites increases while 
the central vortex C pairs with S2. Owing to its increasing size, the tripole entrains 
fluid at its rear and advects it to its front (see figure 20a, which shows the particles at 
period 2). The asymmetry increases until period 4 and in every period entrainment 
of fluid occurs (figure 20b,c). After period 4 the asymmetry begins to decrease and 
lobe-like structures are formed at the rear, which indicates the detrainment of fluid, 
in this case not from the vortices themselves but from the oval region of stirred 
fluid that surrounds the tripole. At period 8 the tripole reaches its initial latitude 
and becomes (approximately) symmetric again. A new growing phase occurs between 
periods 8 and 12, and the process is repeated. 

From the satellites themselves interior fluid is detrained during the first growing 
phase and the core of trapped fluid reduces in size, but after the first growing phase 
(periods 14) the core sizes do not change noticeably any further. The fluid patches 
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FIGURE 20. For caption see facing page. 
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ejected from the satellites are well stirred, remaining in the surroundings of the tripole 
for at least one tripole excursion. 

This series of Poincare sections illustrates a characteristic feature of the modulated 
tripole, namely that the distances between the vortices are not equal in two subsequent 
PoincarC. sections. However, if the y-effect is small (i.e. if Rdy./ico+l and R = O(d))  
the difference between those distances is small and the vortices’ circulations remain 
approximately constant, in which case the evolution during any period is mainly 
determined by the configuration at the beginning of that period. This argument 
suggests that the series of PoincarC maps obtained from a single initial condition 
in the parameter plane (y.,R), approximately corresponds with a series of Poincare 
sections obtained in the asymmetric (but non-modulated) case for some range of the 
parameter f. 

4.3. Experimental observations 
For the analysis of transport in the experimental situation we return to the experiment 
shown in figure 1. The distribution of dye at some particular instants in the evolution 
is analysed. These instants are chosen as those at which linear (0 = n) or isosceles- 
triangle (a  = b)  configurations occur. 

The dye used for visualization was placed originally in the outer ring of the 
monopolar vortex. Therefore, as the tripole is formed, most of the dye becomes 
concentrated in the satellites, while the central vortex consists of undyed fluid. This 
was done because one satellite is always involved in the exchange of fluid, either with 
the central vortex or with the ambient fluid. Fluid can pass from one satellite to the 
other through the central vortex, and from the latter to the ambient fluid through 
one of the satellites. 

Time t = 0 is defined as the instant at which the generation of the tripole was 
completed, and the rotation period of the table ( T  = 11.1 s) is taken as the unit of 
time. In figure 21(a) one can see a fairly symmetric structure, with the three vortices 
well aligned and S1 and S2 closely attached to C. However, the tripole soon becomes 
asymmetric and although at t = 3.2T the three vortices are again linearly arranged 
(figure 21b), Sz has separated from C, while S1 remains attached to the central vortex, 
forming a dipole-like structure. Bands of fluid (both  dyed and undyed) connect this 
couple with the monopole at the front of the tripole (which moves to the left in the 
pictures), while fluid is being entrained between the couple and the monopole S2 at 
the rear of the tripole. Owing to its asymmetry the couple C-SI moves back and 
collides with S2 at t = 5 T  (figure 21c). A large ring of undyed fluid surrounds satellite 
S2 at this stage. The central vortex C changes partner and moves away with vortex 
S2, forming a compact couple. As the structure reaches a new linear configuration 
at t = 7.7T the amplitude of the asymmetry has grown noticeably (figure 21d). The 
band of fluid connecting the couple with the monopole is thicker and contains larger 
lobes of ambient fluid, and a large amount of fluid is being entrained at the rear side 
of the tripole. The couple C-S2 moves back and collides with vortex S1 at t = 10.4T 

FIGURE 20. Advection by the modulated point-vortex tripole on the y-plane: the graphs show the 
positions of particles in different Poincark sections in a single numerical experiment. (a) n = 2, ( b )  3, 
(c) 4, ( d )  5, ( e )  6, ( f )  7. The calculations were performed for R = 3, y. = 0.01. The vortex trajectories 
are shown in figure 7(a), the positions of the vortices at periods 2-7 are shown in figure 17(c) and 
the number and initial position of particles are indicated in figure 17(b). ‘Red’ particles were located 
initially within the central vortex, and ‘green’ and ‘yellow’ particles within each satellite, respectively. 
The crosses indicate the position of the pole (or tank centre). 
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FIGURE 21. Plan-view of the experimental tripolar vortex shown in figure 1. Linear or isosce- 
les-triangle configurations are observed to occur at (a) t = 0, 3.2T (b ) ,  5T (c) ,  7.7T (d) and 10.4T 
( e ) ,  where T = 11.1 s is the rotation period of the table. The crosses indicate the position of the 
tank centre. 

(figure 21e). The kink of the tripole is larger than in frame (c), and the ring of 
ambient fluid surrounding S1 is also larger than the ring around S, in (c).  

The same modulated point-vortex model used to simulate the motion of the vortex 
centres (figure lob)  is used now to simulate the advection of fluid patches. The initial 
contours of these patches were chosen to be the separatrices of the unperturbed 
tripole. As in the experiment described above the contours are plotted when a linear 
or an isosceles-triangle configuration occurs. In that sense the series correspond with 
one another, although not exactly in time (see 53.3). All the main features observed 
in the laboratory experiment can be observed in the simulation, namely formation 
of bands of interior fluid at the front and entrainment of ambient fluid at the rear, 
with the amount of entrained fluid increasing as time progresses (compare figure 22b 
with 22d or figure 22c with 22e). 

5. Conclusions 
We have studied the unsteady motion of a tripolar vortex on a rotating free-surface 

fluid. It has been observed in the laboratory that a tripole generated off-centre 
is initially symmetric: the three vortices are located on a straight line and the 
satellite vortices are equally separated from the central vortex. However, the structure 
soon becomes asymmetric, which results in the emergence of a misalignment of the 
vortices and the pairing of the central vortex with one of the satellites. The tripole 
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FIGURE 22. Numerical simulation of the evolution of fluid initially trapped by the modulated 
point-vortex tripole. Calculations were performed using the same initial conditions as those in the 
experiment shown in figure 21 and results are shown as the point vortices reach the corresponding 
configuration. The contours of the patches initially trapped by the symmetric tripole are shown at 
(a)  t = 0, 5.8T (b) ,  8.5T (c), 12.6T ( d )  and 15.8T (e); with T the timescale used in figure 21. 

then translates and rotates quasi-periodically, with the central vortex pairing in turn 
with each satellite. This time-dependent behaviour leads to shedding of mass from 
the satellites and stretching and folding of the detrained fluid. 

A non-modulated point-vortex tripole shows a similar time-dependent behaviour. 
As in the experiments this asymmetric structure has net linear momentum, but in 
contrast with the observations the motion is periodic and the asymmetries have a 
constant amplitude. The motion of particles in the velocity field of this point-vortex 
tripole was studied using the ‘dynamical-systems’ approach, and it was found that for 
all values of the perturbation parameter c # 0 chaotic particle motions appear and 
fluid is exchanged between the different flow regions. The amount of mass exchanged 
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during one period increases with increasing f. Except for values of E. close to the 
critical value (fc NN 0.544), the translating tripole carries a large area of stirred fluid. 

The squeezing and stretching of fluid columns due to the parabolic free surface of 
the fluid (the topographic equivalent of the y-plane) was proposed as a mechanism for 
the enhancement of the asymmetry and the translation of the tripole. The hypothesis 
was tested using a point-vortex tripole modulated on the basis of conservation 
of potential vorticity on the (topographic) y-plane. It was found that an initially 
symmetric point-vortex tripole becomes asymmetric owing to the modulation. In 
addition to the rotational motion of the satellites around the central vortex, the 
structure as a whole translates towards the centre of the tank. The rotation period 
of the satellites around the central vortex is not constant, and the perturbation 
amplitudes increase as the tripole shifts centrewards. As a consequence, the advection 
of particles cannot be studied with a single two-dimensional map - as in the non- 
modulated case - but with a series of maps. Numerical calculation of such series 
shows that during the phase of growing perturbation the tripole entrains mass and 
efficiently stirs a large region of fluid, which is also carried by the tripole during the 
phase of decreasing perturbation. The vortex trajectories as well as the advection 
of fluid masses computed using this simple modulated point-vortex model show a 
remarkable agreement with the experiments observations. 

There is a remarkable similarity between the flow field of a tripolar vortex and 
the field due to an elliptical patch of uniform vorticity (i.e. a Kirchhoff vortex), when 
they are viewed in their respective co-rotating frames. In such frames both velocity 
fields possess three centres of rotation and two stagnation points as in figure 13(a). 
As a consequence, if a small perturbation is imposed on either system the resultant 
advection patterns will be similar. This can be easily verified by comparing, for 
instance, the flow around an asymmetric point-vortex tripole (for € 4 ~ ~ )  with the flow 
around a Kirchhoff vortex embedded in a weak linear strain, i.e. with the flow around 
a Kida vortex (Polvani & Wisdom 1990). However, the advection patterns produced 
by a strongly asymmetric tripole are qualitatively very different from the patterns 
produced by a Kida vortex with an intense background flow. In the tripolar vortex 
the size of the chaotic region is comparable to the tripole’s size, whereas in the Kida 
vortex the chaotic region can be much larger than the elliptical vortex (Polvani & 
Wisdom 1990). 
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on an earlier version of this paper. O.U.V.F. gratefully acknowledges financial support 
from the Netherlands Foundation for Fundamental Research on Matter (FOM). 
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